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1 Introduction 

Meaningful air pollution regulation in the United States began in California with the creation of the Los Angeles 
County Air Pollution Control District (LACAPCD) that had the authority to regulate emissions that contributed to 
“smog” across the cities within its boundaries.  Early actions by the LACAPCD limited emissions from factories, 
orchards, refuse burning, petrochemical refining, and motor vehicles. Authority for regulating emissions from motor 
vehicles has evolved extensively in the following decades, with significant reductions achieved through numerous 
advancements in vehicle engine and emissions control technology.  California and Los Angeles are still synonymous 
with “car culture”, but the conventional wisdom that motor vehicles dominate air pollution in California is gradually 
fading. 
 
Accurately estimating the evolving public health impacts of air pollution associated with motor vehicles (or any 
major pollution source) requires the estimation of accurate pollutant concentration fields across the study region of 
interest.  Traditional air pollution studies relied on measurements at monitoring locations combined with source 
apportionment studies based on “chemical fingerprints” for this exposure analysis.  More recent studies have 
adapted chemical transport models (CTMs) to estimate exposure fields.  CTMs simulate the emissions, transport, 
deposition, and chemical transformation of pollutants in the atmosphere.  CTMs are often used to developed state 
implementation plans (SIPs) that will achieve compliance with National Ambient Air Quality Standards (NAAQS).  
Sufficiently accurate CTMs can also be used to estimate pollution concentration fields to estimate public health 
impacts. 
 
The chief components of photochemical “smog” are ozone (O3) and airborne particulate matter with aerodynamic 
diameter smaller than 2.5 µm (PM2.5).  Of these two components, PM2.5 typically accounts for more than 90% of the 
public health impacts in modern air pollution episodes in the United States.  PM2.5 spatial gradients are often gradual 
across major urban areas, making it possible to find associations with public health based on a small number of 
centralized monitors.  Estimating specific health impacts associated with sources such as motor vehicles that are 
concentrated along transportation corridors is more challenging, because spatial gradients for pollutants emitted 
around these facilities change much more quickly than total PM2.5 concentrations.  CTMs developed for the 
continental US or entire states often use spatial resolutions of 36-km or 12-km that mask many of these important 
spatial gradients. 
 
The purpose of this project is to predict concentrations fields of PM2.5 emitted from on-road motor vehicles with 
spatial resolution of 1-km in order to resolve sharp spatial gradients around major transportation corridors.  CTMs 
will be developed for four heavily polluted urban areas in California: Los Angeles, the San Francisco Bay Area, 
Sacramento, and Fresno over the years 2000-2011.  Predicted pollutant concentrations will be compared to all 
available measurements to confirm the accuracy of the model results (and to correct biases when necessary).  
Source-tagging methods will then be used to predict concentration fields associated with tailpipe emissions from on-
road diesel and gasoline vehicles.  Once exposure fields are processed, the evolution of the public health impacts of 
PM2.5 emitted from on-road motor vehicles will be estimated using standard tools developed by the US EPA.  Final 
results will estimate the avoided mortality and monetary value of the public health benefits associated with reduced 
vehicle emissions over the 12-year study period. 
 
2 Methods 

 
2.1  Chemical Transport Model 

Simulations for the years 2000-2011were carried out across California using the source-oriented UCD/CIT regional 
air quality model. The UCD/CIT airshed model is a reactive 3-D CTM that predicts the evolution of gas and particle 
phase pollutants in the atmosphere in the presence of emissions, transport, deposition, chemical reaction, and phase 
change as represented by Eq. (1) 
 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝑢𝑢𝐶𝐶𝑖𝑖 = ∇𝐾𝐾∇𝐶𝐶𝑖𝑖 + 𝐸𝐸𝑖𝑖 − 𝑆𝑆𝑖𝑖 + 𝑅𝑅𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶) + 𝑅𝑅𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐶𝐶) + 𝑅𝑅𝑖𝑖
𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶)  (eq 1) 



where Ci is the concentration of gas or particle phase species i at a particular location as a function of time t, u is the 
wind vector, K is the turbulent eddy diffusivity, Ei is the emissions rate, Si is the loss rate, Ri

gas is the change in 
concentration due to gas-phase reactions, Ri

part is the change in concentration due to particle-phase reactions and 
Ri

phaseis the change in concentration due to phase change [1]. Loss rates include both dry and wet deposition. Phase 
change for inorganic species occurs using a kinetic treatment for gas-particle conversion [2] driven towards the point 
of thermodynamic equilibrium [3]. Phase change for organic species is also treated as a kinetic process with vapor 
pressures of semi-volatile organics calculated using the 2-product model [4]. 
 
The basic capabilities of the UCD/CIT model are similar to the CMAQ model maintained by the US EPA, but the 
UCD/CIT model has several source apportionment features and more particle size resolution, which makes it 
attractive for the current project. The UCD/CIT model explicitly tracks the mass and the number concentration of 
particles in 15 discrete size bins spanning the range from 10nm through 10 µm, with tracer species used to quantify 
source contributions to the primary particle mass in each bin. A moving sectional bin approach is used [5] so that 
particle number and mass can be explicitly conserved with particle diameter acting as the dependent variable.  
 
The emissions of particle source tracers are empirically set to be 1% of the total mass of primary particles emitted 
from each source category, so they do not significantly change the particle radius and the dry deposition rates. For a 
given source, the simulated concentration of artificial tracer directly correlates with the amount of PM mass emitted 
from that source in that size bin. The corresponding number concentration attributed to that source can be calculated 
using Eq. (2) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖×100
𝜋𝜋
6𝐷𝐷𝐷𝐷

3𝜌𝜌
  (eq 2) 

where traceri represents the artificial tracer mass in size bin i, Dp is the core particle diameter, and ρ is the core 
particle density. Core particle properties are calculated by removing any condensed species to better represent the 
properties of the particles when they were emitted. More details describing the source apportionment technique in 
UCD/CIT model are provided in previous studies [6-10]. 
 
A total of 50 particle-phase chemical species are included in each size bin. Gas-phase concentrations of oxides of 
nitrogen (NOx), volatile organic compounds (VOCs), oxidants, ozone, and semi-volatile reaction products were 
predicted using the SAPRC-11 chemical mechanism [11].  
 
UCD/CIT Model Predictions at 24km, 4km, and 1km resolution  
Air pollution exposure fields vary in space and time but the highest concentrations are fundamentally linked to 
emissions, which are generally correlated with population density. Spatial gradients for many primary pollutants are 
sharpest around the emissions sources in large cities. This exposure pattern motivates the development of nested 
exposure fields with coarse spatial resolution in rural areas and fine spatial resolution in urban areas to efficiently 
describe air pollution exposures across large regions.  
 
Figure 1 illustrates the nested domains used to predict monthly-average PM2.5 concentrations across California in 
the years 2000-2011in the current project.  The outer domain in white uses 24-km resolution to cover all of 
California, followed by nested domains in cyan that use 4-km resolution to cover central and southern-California, 
followed by nested domains in yellow that use 1-km resolution to cover Los Angeles, Fresno, Sacramento, and the 
San Francisco Bay Area. Finer spatial resolution reveals hotspots over smaller regions, which exposes the smaller 
population within those regions to higher concentrations. The strategy using nested exposure fields with finer spatial 
resolution over large population centers is an efficient approach to estimating population exposures that balances 
accuracy with computational expense. 
 



 
Figure 1: 24-km (white), 4-km (cyan), and 1-km (yellow) model domains used to predict airborne particulate matter 
concentrations over California during the period 2000-2011. 
  

2.2 Meteorological Model 

Hourly meteorology inputs to drive the regional chemical transport model at 24-km, 4-km,. and 1-km resolution in 
the years 2000-2011 were simulated using the Weather Research and Forecasting (WRF) v3.4 model (www.wrf-
model.org). WRF model vertical resolution was 31 vertical layers from the ground level to the top pressure of 100 
hPa. Initial and boundary conditions for meteorological simulations were be taken from North American Regional 
Reanalysis (NARR), which has a spatial resolution of 32 km and a temporal resolution of 3 h. The Yonsei 
University (YSU) boundary layer vertical diffusion scheme [12] and Pleim-Xiu land surface scheme [13] were 
adopted in this study. Four-dimensional data assimilation was applied to anchor the model predictions to observed 
meteorological patterns. Surface friction velocity (u*) was increased by 50% to correct bias during the events with 
low surface winds that produce the highest pollutant concentrations. 
 

2.3  Emissions 

 
The emission inventories used in the current study were provided by the California Air Resources Board for the 
years 2000 and 2010.  Area and point source emissions between these anchor years were scaled using statewide 
factors obtained for each individual Emissions Inventory Code (EIC) from 
https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php unless otherwise discussed below.  

https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php


Basecase fugitive dust emissions were replaced by an online dust model [14] based on the wind speed, and soil 
moisture predicted by the WRF model.  This change corrects the positive bias in dust emissions and PM2.5 mass 
noted by Hu et al. [15, 16].  
 
Emissions inventories provided by CARB had spatial resolution of 4-km.  Area source emissions with spatial 
resolution of 1-km were created for major UFP sources using spatial surrogates processed with the “Spatial 
Allocator” software maintained by US EPA.  Off-road gasoline emissions used spatial surrogate 620 (service and 
commercial employment; 11% of emissions) and spatial surrogate 630 (service and commercial employment at 
schools, golf courses, and cemeteries; 60% of emissions).  Spatial surrogate 620 was created from information 
provided by Metropolitan Planning Organizations (MPOs) / Council of Governments (COGs) throughout California.  
Spatial surrogate 630 was obtained directly from CARB at 1km resolution since the corresponding shapefile 
contained proprietary information.  Off-road diesel engines used spatial surrogate 490 (rail lines; 60% of emissions) 
and 500 (rail yards; 11% of emissions). 
 
Additional details of the methods used to prepare emissions inventories are described below. 
 
2.3.1 Mobile Source Emissions 

Mobile source emissions at 24-km and 4-km resolution were obtained from CARB based on calibrated travel 
demand models combined with California’s Emissions Factor (EMFAC) model v2014.  EMFAC was also used to 
scale mobile source emissions in 69 regions throughout California using day-specific meteorology from WRF. 
Scaling factors were derived for each region by comparing EMFAC results from the anchor year to results from the 
target year.  These factors simultaneously account for emissions changes caused by the year-specific evolving 
vehicle fleet distribution and emissions changes caused by day-specific meteorology.  The unique scaling factors for 
each of the 69 EMFAC regions were applied to all of the 24-km and 4-km model grid cells contained in that region.   
 
Mobile source emissions at 1-km resolution were calculated using the fuel-based gridded inventory described by 
McDonald et al. [17] for the year 2005. This inventory provides space- and time-varying values of gasoline and 
diesel fuel consumption (mass of fuel burned per unit time) by on-road vehicles. McDonald and Harley [18] report 
that gasoline and diesel fuel sales in the San Francisco Bay Area air basin decreased by 10.5% and 8.1%, 
respectively, between the years 2005 and 2010. The 2005 gridded fuel-based inventory is scaled accordingly to 
account for fuel use changes between years 2005 and 2010. Similar corrections are made for the SoCAB inventory 
in 2010.  The EMFAC model was used to calculate emission factors (mass of pollutant emitted per mass of fuel 
burned) for the pollutants listed in Table 1 and Table 2 for summer and winter, respectively. Fuel consumption 
values from the fuel-based inventory are multiplied by these emission factors to obtain emission rates (mass of 
pollutant emitted per unit time). 
 

Table 1. EMFAC summer emission factors (mass of pollutant emitted per mass of fuel burned) for the year 2010. 
Values in parenthesis were measured in 2010 at the Caldecott tunnel, CA and are provided for comparison. 

Pollutant San Francisco Bay Area  South Coast Air Basin  
 Gasoline  

Engines 
Diesel  
Engines 

 Gasoline 
Engines 

Diesel Engines Units 

CO2 3.0 (3.0)a 3.1 (3.2)a  2.95 3.2 kg kg−1 
CO 29 (14.3)b 5.1 (8)c  24.5 6.8 g kg−1 
NOx 2.7 (1.9)b 24 (28)c  2.3 24.8 g kg−1 

SOx 30 30  29.5 29.3 mg kg−1 
NMOC  
(exhaust) 

1.4 1.2  1.2 1.6 g kg−1 

NMOC  
(evaporative) 

1.6 0  1.5 0 g kg−1 

PM25 27 (38)b 650  25.5 744 mg kg−1 
a: values calculated from carbon content of fuels reported by [19]; b: values from [20] c: values from [21]  



 
Table 2. EMFAC winter emission factors (mass of pollutant emitted per mass of fuel burned) for on-road sources for 

the year 2010. Values in parenthesis were measured in 2010 at the Caldecott tunnel, CA and are provided for 
comparison. 

Pollutant San Francisco Bay Area  South Coast Air Basin  
 Gasoline  

Engines 
Diesel  
Engines 

 Gasoline 
Engines 

Diesel Engines Units 

CO2 3.0 (3.0)a 3.1 (3.2)a  2.95 3.2 kg kg−1 
CO 34 (14.3)b 5.2 (8)c  25.1 7.1 g kg−1 
NOx 3.6 (1.9)b 25 (28)c  2.6 25.8 g kg−1 

SOx 30 30  29.8 29.3 mg kg−1 
NMOC  
(exhaust) 

1.9 1.2  1.3 1.6 g kg−1 

NMOC  
(evaporative) 

1.5 0  1.7 0 g kg−1 

PM25 29 (38)b 660  26.0 751 mg kg−1 
a: values calculated from carbon content of fuels reported by [19]; b: values from [20] c: values from [21]  

 
The EMFAC model does not provide emission data for ammonia. Ammonia emissions were estimated by 
multiplying NOx emission estimates by observed NH3 to NOx ratios in gasoline and diesel vehicles exhaust plumes. 
The Fuel Efficiency Automobile Test (FEAT) Data Center reports emission measurements from on-road studies 
conducted at a variety of locations and time. At each location, the mol fractions of CO, CO2, HC, NO, SO2, NH3, 
and NO2 in the exhaust plumes of passing vehicles are measured using remote sensing techniques. Data reported for 
California sites (Table 3 and Tale 4) collected for 2008 – 2012 were used to calculate average NH3 to NOx emission 
ratios of 0.19 for on-road gasoline vehicles and 0.0092 for on-road diesel vehicles. 
 
Table 3. Measurement sites from the Fuel Efficiency Automobile Test Data used to calculate NH3 to NOx emission 

ratios for on-road vehicles in the SoCAB. 
 Site Years in the range 2008 to 2012 with available data 

Gasoline: West Los Angeles, LaBrea Boulevard 2008 
 Van Nuys 2010 

 San Jose 2008 

 Fresno 2008 

Diesel: Port of Los Angeles 2008, 2009, 2010, 2012 
 Orange County, Riverside Freeway 2008, 2009, 2010, 2012 

 
Table 4. Measurement sites from the Fuel Efficiency Automobile Test Data used to calculate NH3 to NOx emission 

ratios for on-road vehicles in the San Francisco Bay Area. 
 Site Years in the range 2008 to 2012 with 

available data 

Gasoline: San Jose 2008 
 Fresno 2008 

 West Los Angeles, LaBrea Boulevard 2008 



 Site Years in the range 2008 to 2012 with 
available data 

 Van Nuys 2010 

Diesel: Port of Los Angeles 2008, 2009, 2010, 2012 
 Orange County, Riverside Freeway 2008, 2009, 2010, 2012 

 
Diurnal profiles from McDonald et al. [17] were used to distribute emissions in time, separately for gasoline and 
diesel (Figure 2). Separate diurnal profiles were used for the following day-of-week scenarios, as reported by 
McDonald et al. [17]: Monday through Thursday, Friday, Saturday, and Sunday. Daily emission totals were also 
scaled for each season and each day-of-week scenario, using values reported by McDonald et al. [17]. For example, 
the gasoline-related CO2 emission total on a Monday is different from the gasoline-related CO2 emission total on a 
Saturday. Seasonal scaling factors were calculated using data for June through August (summer) and December 
through February (winter). McDonald et al. [17] provide separate profiles for urban and rural roadway segments but 
urban profiles were used everywhere to avoid discontinuities where urban grid cells are adjacent to rural grid cells. 
Fuel densities (gasoline: 741 g L−1; diesel: 850 g L−1) reported by Gentner et al. [19] are used for conversion 
between volumes and masses of fuel. 
 

 

Figure 2: Diurnal emission profiles of on-road vehicle emissions from McDonald et al. [17]. 
 
 
 



2.3.2 Diesel Particle Filters 

Diesel particle filters (DPFs) reduce particulate matter emissions from diesel engines by +98% by oxidizing all of 
the carbonaceous material contained in the particles [22].  The EMFAC v2014 model was used to scale on-road 
diesel emissions to account for the adoption of DPFs using the procedures described in the previous section.  
EMFAC describes PM emissions rates but does not account for the change in the composition of emitted particles. 
The PM emissions from diesel engines equipped with a DPF have low carbon content and higher concentrations of 
residual components such as sulfate [22].  These changes are important when viewed per unit of emitted PM mass, 
but fleet average emissions profiles are dominated by the diesel vehicles that do not have DPFs installed.  The 
majority of the effect from DPF adoption was therefore captured by the EMFAC scaling, with a minor contribution 
from the altered diesel PM profile for the residual ~2% of PM emissions.   
 
2.3.3 Gasoline Direct Injection Engines 

Gas Direct Injection (GDI) gasoline vehicles were assumed to penetrate the light duty vehicle fleet starting in 2007 
based on market share information. GDI vehicles have higher PM emissions rates and higher EC content than 
corresponding PFI vehicles. EMFAC accounts for the change in PM emissions rates associated with GDI adoption 
but not for the resulting change in the composition of emitted particles. In the current study, modified PM emissions 
profiles for on-road gasoline vehicles were constructed for each simulation year using measurements from Port Fuel 
Injection (PFI) and GDI vehicles weighted by market share.   
 
 
 
2.3.4 Residential Wood Burning 

Residential wood smoke emissions were updated by considering POA evaporation and wood burning control 
policies applied in California [23]. These updates reduced the effective residential wood smoke primary organic 
aerosol (POA) emissions by 50% in all years compared to the basecase inventories, and better represent long-term 
trends in wood smoke emissions.  PM0.1 measurements and source apportionment studies {Xue, 2018 #23}strongly 
suggest that particulate organic carbon emitted from biomass combustion is semi-volatile, with roughly 50% of the 
emissions evaporating under typical ambient conditions.  In the current study, the OC emitted in wood smoke was 
reduced by 50% to represent the effects of this evaporation process.  The 50% of the residual wood smoke OC that 
did not evaporate after atmospheric dilution was assumed to be non-volatile in the UCD/CIT calculations. 
 
2.3.5 Natural Gas Combustion 

Natural gas combustion exhaust was tracked separately in model calculations to quantify the contributions that this 
source makes to ambient ultrafine particulate matter. Natural gas emissions were scaled each year based on 
statewide consumption data available from the United States Energy Information Administration (www.eia.gov).  
Figure 3 summarizes the natural gas scaling factors applied to the year 2000 emissions to represent the years 2000-
2009.  Residential and Commercial / Industrial natural gas combustion emissions both peak during the colder winter 
months.  Residential natural gas combustion emissions decrease significantly during warmer summer months due to 
the decline in heating demand.  Commercial / industrial natural gas combustion emissions also decrease during the 
summer but not as severely as residential emissions.  Natural gas emissions for electricity production increase during 
the summer as demand for air conditioning increases with warmer temperatures. 
 
Natural gas combustion emissions in years 2010 and later were represented using the month of year and day of week 
emissions presented in the preceding anchor emissions inventory.  
 
 



 
Figure 3: Natural gas scaling factors applied to year 2000 emissions for each target year.  Information from the 
United States Energy Information Administration. 
 
The size distribution of natural gas emissions was measured in laboratory experiments to confirm the accuracy of the 
source profiles used in model calculations [24].  Emissions dilution experiments indicated that residential natural gas 
combustion particles will partially evaporate after release to the atmosphere.  Residential natural gas particle 
emissions were reduced by 70% to represent the effects of this evaporation process.  The residual natural gas 
combustion OC was assumed to be non-volatile in the UCD/CIT model calculations. 
 
2.3.6 Soil NOx 

Candidate soil NOx emissions were included in the calculations based on a biogeochemical model combined with 
fertilizer application rates [25].  Soil NOx emissions varied by month of the year based on the effects of temperature 
on the biogeochemical cycle.  Sensitivity studies carried out across years between 2000 – 2015 indicate the inclusion 
of soil NOx emissions improves the accuracy of model predictions for gas phase ozone and particulate nitrate [26]. 
 
2.3.7 Biogenic Emissions 

Biogenic emissions were generated using the Model of Emissions of Gases and Aerosols from Nature 
(MEGANv2.1) based on the meteorological fields generated using the WRF model.  The gridded geo-referenced 
emission factors and land cover variables required for MEGAN calculations were created using the MEGANv2.1 
pre-processor tool and the ESRI_GRID leaf area index and plant functional type files available at the Community 
Data Portal [27]. 
 
 
2.3.8 Wildfires 

Daily values of wildfire emissions were generated using the Global Fire Emissions Database (GFED) [28].  Wildfire 
emissions were assigned the same particle size and composition distribution as routine biomass combustion.  
Typical wildfire plumes rise to 6-10 km in the atmosphere depending on the intensity of the fire and the local 
meteorological conditions [29].  Wildfire plumes were injected at the top of the model domain at a height of 
approximately 5 km in the current simulations.  Future studies will evaluate the sensitivity of the plume-rise 
treatment but this analysis is beyond the scope of the current report. 
 
 



Wildfire emissions were represented using the Global Fire Emissions Database (GFED) [30]. GFED uses satellite 
images of burned areas combined with vegetation maps to estimate smoke released each day during wildfires. 
Spatial resolution of GFED emissions inventories are 0.25 degrees. Smoke from these fires impacted cities 
throughout central California as plumes were trapped within the Central Valley. Wildfire emissions were assigned 
particle size and composition profiles based on measurements during biomass burning experiments [31]. 
 

2.4  Initial / Boundary Conditions 

 
Initial and boundary conditions for 24-km simulations were generated from the global concentration field predicted 
by the Model for Ozone and Related chemical Tracers (MOZART).  Additional details of MOZART simulations are 
provided by Emmons et al. [32].  Initial and boundary conditions for nested 4-km and 1-km simulations were 
obtained from the parent simulations (see Figure 1). 
 
 
3 Results 

 
3.1  Statistical Bias Correction of Concentration Fields 

 
Predicted monthly-averaged PM2.5 concentrations were compared to measured PM2.5 concentrations at all available 
monitoring sites (n=38) across each of the four 1-km study domains for the entire duration of the study period years 
2000-2011.  Summary statistics were calculated to characterize CTM performance, including the correlation 
coefficient (R), mean fractional error (MFE), mean fractional bias (MFB), mean error (ME), mean bias (MB), and 
root mean square error (Table 5).  Basecase PM2.5 predictions were reasonably well correlated with measured 
concentrations (average R2=0.69) but the predicted concentrations exceeded measured concentrations by a factor of 
approximately 50% (average MFB=0.56).  This over-prediction is likely caused by an under-prediction of vertical 
mixing and dilution associated with the combination of updates to the WRF model v3.4 and the incorporation of 
non-local transport terms into the aerosol advection / diffusion algorithms.  
 
Table 5. Model performance statistics for basecase simulations followed by statistical bias correction during post-
processing.  All comparison statistics are based on monthly-averages over the years 2000-2011.  Each row 
represents results from a monitoring site within the indicated 1-KM resolution study domain.     
 

 Basecase bias_corr_v2 

 Mean 
obs 

R mfe mfb me Mb Model 
pred 

rmsqe R mfe mfb me mb Model 
pred 

Rmsqe 

FR
ES

N
O

 

17.77 0.85 0.52 0.50 14.13 13.87 31.64 19.67 0.78 0.26 -
0.15 

5.01 -2.46 15.31 7.81 

16.74 0.81 0.54 0.52 14.02 13.76 30.49 18.94 0.68 0.34 -
0.25 

5.41 -3.78 12.96 8.15 

17.01 0.86 0.49 0.48 12.39 12.23 29.24 16.80 0.75 0.40 -
0.35 

5.86 -4.97 12.01 8.45 

20.81 0.85 0.34 -
0.26 

4.91 -3.15 17.66 6.25 0.02 1.00 -
1.00 

13.74 -
13.74 

6.37 15.70 

Lo
s A

ng
el

es
 

16.46 0.49 0.57 0.57 12.58 12.42 28.88 13.94 0.74 0.21 0.10 3.28 1.31 17.79 4.16 

18.21 0.48 0.54 0.54 13.03 12.91 31.12 14.71 0.80 0.16 -
0.02 

2.88 -0.71 17.50 3.83 

17.97 0.61 0.65 0.65 16.84 16.84 34.81 17.80 0.85 0.13 -
0.02 

2.24 -0.24 17.72 2.94 

14.23 0.41 0.49 0.49 9.14 8.98 23.21 11.24 0.71 0.20 0.09 2.91 1.08 15.30 3.61 

19.43 0.51 0.50 0.50 13.17 13.17 32.60 15.48 0.86 0.12 0.03 2.36 0.29 19.69 3.11 

13.31 0.78 0.70 0.70 15.38 15.38 28.69 16.84 0.62 0.20 -
0.05 

2.62 -0.70 12.61 3.21 



 Basecase bias_corr_v2 

 Mean 
obs 

R mfe mfb me Mb Model 
pred 

rmsqe R mfe mfb me mb Model 
pred 

Rmsqe 

22.26 0.69 0.33 0.32 8.58 8.39 30.65 10.26 0.79 0.14 -
0.02 

3.22 -0.82 21.38 4.33 

14.95 0.77 0.68 0.68 15.79 15.79 30.74 16.73 0.79 0.15 0.03 2.18 0.33 15.28 2.68 

15.42 0.55 0.63 0.62 13.47 13.43 28.84 14.50 0.85 0.19 0.15 2.88 2.18 17.62 3.53 

15.86 0.64 0.65 0.65 14.98 14.98 30.84 16.29 0.82 0.18 0.11 2.96 1.56 17.41 3.76 

13.71 0.72 0.85 0.85 20.43 20.43 34.14 21.51 0.86 0.17 0.14 2.55 2.10 15.82 3.26 

19.53 0.82 0.46 0.46 11.02 11.02 30.54 11.75 0.80 0.26 0.22 5.19 4.15 23.68 5.91 

14.83 0.69 0.74 0.74 17.55 17.55 32.38 18.71 0.84 0.18 0.12 2.82 1.84 16.67 3.50 

18.86 0.62 0.36 0.31 7.31 6.04 24.91 8.53 0.87 0.17 -
0.08 

3.15 -2.04 16.83 4.27 

21.17 0.59 0.28 0.17 6.05 3.11 24.28 7.05 0.80 0.25 -
0.21 

5.13 -4.48 16.69 6.52 

18.11 0.68 0.33 0.31 7.11 6.77 24.88 8.18 0.77 0.24 -
0.23 

4.12 -3.92 14.19 5.10 

19.35 0.51 0.53 0.52 14.21 14.14 33.49 16.97 0.87 0.13 -
0.01 

2.42 -0.27 19.10 3.13 

18.76 0.63 0.42 0.41 9.15 8.99 27.74 10.51 0.82 0.16 -
0.05 

2.93 -1.27 17.47 3.96 

SA
C 

9.97 0.71 0.85 0.84 20.60 20.46 30.43 29.13 0.68 0.47 0.01 7.06 3.70 13.71 11.68 

11.96 0.70 0.65 0.63 12.92 12.19 24.15 16.95 0.63 0.56 -
0.53 

5.08 -4.69 6.78 7.35 

11.36 0.75 0.77 0.76 17.87 17.70 29.06 23.69 0.73 0.36 -
0.19 

4.12 -0.72 10.68 6.19 

10.36 0.81 0.80 0.80 17.47 17.39 27.75 23.36 0.76 0.31 -
0.07 

3.68 0.41 10.77 5.86 

8.87 0.67 0.74 0.74 11.76 11.68 20.55 14.76 0.29 0.48 -
0.42 

3.63 -3.27 5.64 5.55 

SF
BA

 

9.96 0.74 0.60 0.59 9.96 9.79 19.74 12.90 0.69 0.24 -
0.18 

2.52 -2.02 7.94 4.24 

9.20 0.61 0.66 0.66 12.05 12.05 21.25 16.05 0.45 0.62 -
0.60 

4.39 -4.03 5.17 4.89 

9.93 0.58 0.62 0.61 10.62 10.48 20.41 13.84 0.52 0.31 -
0.25 

2.95 -2.36 7.56 4.06 

9.71 0.71 0.56 0.55 8.47 8.21 17.93 11.08 0.17 0.69 -
0.69 

5.33 -5.33 4.31 7.39 

10.54 0.78 0.31 -
0.06 

3.22 0.38 10.92 4.35 -0.07 1.15 -
1.15 

6.56 -6.56 2.39 6.85 

10.27 0.71 0.97 0.97 23.83 23.83 34.10 30.23 0.74 0.55 0.00 8.60 4.80 15.07 13.44 

9.50 0.73 0.64 0.63 11.30 11.20 20.70 15.31 0.70 0.53 -
0.50 

3.80 -3.12 6.38 4.85 

12.96 0.85 0.72 0.72 15.87 15.87 28.83 18.85 0.86 0.20 0.13 3.17 1.99 14.95 4.64 

10.94 0.83 0.83 0.83 18.43 18.43 29.37 22.90 0.88 0.21 0.07 3.02 1.81 12.75 5.10 

11.00 0.79 0.75 0.75 14.46 14.45 25.45 17.61 0.79 0.19 0.08 2.33 0.84 11.83 3.49 

10.41 0.75 0.47 0.45 7.70 7.37 17.77 10.74 0.30 0.61 -
0.60 

5.32 -5.29 5.11 7.67 

 
 
The bias in CTM predictions at each monitoring location was combined with the CTM predicted concentrations of 
primary particles emitted from nine different source categories and the concentrations secondary nitrate and sulfate 
particulate matter to form a time-series that was analyzed using multi-linear regression (MLR) based on the equation 
 
      Bias = a1*Tracer1 + a2*Tracer2 +…+a9*Tracer9 + a10*Nitrate + a11*Sulfate     (eq 3) 
 



where ai represents regression coefficients and Traceri represents the concentrations of primary particles emitted 
from: 1. Onroad gasoline vehicles, 2. Offroad gasoline vehicles, 3. Onroad diesel vehicles, 4. Offroad diesel 
vehicles, 5. Biomass combustion, 6. Food cooking, 7. Aircraft, 8. Natural gas combustion, and 9. All other sources.  
Regression coefficients were constrained to values between -5 to +5 for sources other than aircraft and secondary 
nitrate / sulfate.  Regression coefficients for aircraft were constrained to values between 0 to +5.  A more limited 
range was necessary to prevent unreasonable correction factors in the vicinity of military air bases that do not have 
nearby measurement sites that would naturally constrain the coefficients. 
 
The time series from all sites in central California were combined into a single dataset in order to support the eleven 
independent variables in the regression analysis.  Results for all years were combined into a single regression for 
sites in central California because a single set of regression coefficients was able to explain the bias with an R2=0.81 
and a regression slop of 0.91. A separate yearly analysis was performed for the more numerous measurement sites in 
Los Angeles because the meteorological simulations in the South Coast Air Basin surrounding Los Angeles are 
somewhat separate from the meteorological simulations in the San Joaquin Valley due to the isolating effects of the 
mountain ranges between these locations.  Results were analyzed for individual years in Los Angeles because the 
regression coefficients developed across all years had lower explanatory power, perhaps due to more significant 
changes to emissions over time.   
 
The MLR bias equation (eq 3) was applied at each CTM grid cell to predict the bias in CTM concentrations.  The 
baseline CTM concentrations were then adjusted using the equation 
 
  Cbias_corr = Cbaseline * (1-bias/Cbaseline)             (eq 4) 
 
Bias corrections were only applied to primary PM components emitted directly to the atmosphere in the particle 
phase.  Concentrations of secondary PM components predicted by the CTM were not adjusted because the 
measurements at the limited number of speciation sites suggested that secondary components were not over-
predicted to the same extent as total mass. 
 
Summary performance statistics comparing bias-corrected concentrations with measured values are shown on the 
right side of Table 5.  MFB, MFE, ME, MB, and RMSQ improve at 34 out of 38 measurement locations, with 
average MFB= -0.17 for the bias corrected results (compared to MFB=0.56 for original results).  These metrics 
indicate that the statistical bias correction removes a significant fraction of the over-prediction in the model results.  
Likewise, correlation coefficients (R2) between bias-corrected predicted concentrations vs. measured concentrations 
improve at 20 out of 38 measurement sites, but degrade slightly at 13 sites and significantly at the remaining five 
sites (Figure 4).  These summary statistics indicate that statistical bias correction generally improves the accuracy of 
the predicted exposure fields, but this method does not uniformly correct all errors in the CTM predictions, and may 
degrade performance at some locations.  Future efforts should correct the bias in the transport calculations to reduce 
or eliminate the bias in the predicted concentration fields. 
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Figure 4: Correlation coefficient (R2) between predicted and measured concentrations at 38 measurement sites 

across the 1-km domains shown in Figure 1. 
 

 



3.2  PM2.5 Comparison to Measured Concentrations 

 
Figures 5-8 illustrate the time trend of bias-corrected PM2.5 predictions vs. measurements at 38 measurement 
locations across the four 1-km study domains.  Predicted concentrations are largely in agreement with measured 
concentrations after bias-corrections following the methods described in the previous section.   
 
A long-term trend of decreasing PM2.5 concentrations is both predicted and observed across the measurements sites 
in the Los Angeles domain (Figures 5-6).  The improvements in air quality are largely attributable to reductions in 
emissions motivated by State Implementation Plans (SIPs) designed to bring long-term concentrations into 
compliance with the National Ambient Air Quality Standards (NAAQS).  Los Angeles is dominated by on-road 
vehicle emissions to a larger extent than other cities in California, and so improvements in fuel economy and 
emissions control systems are particularly noteworthy in this region.  The adoption of new diesel engine standards in 
2007 that require the use of diesel particle filters (DPFs) and ultra-low sulfur diesel (ULSD) fuel significantly 
reduced particulate matter emissions from heavy-duty vehicles in the Los Angeles region.  Continuous 
improvements in Port Fuel Injection (PFI) engines decreased emissions from gasoline-powered light duty vehicles 
throughout the early 2000’s, but the more recent adoption of Gas Direct Injection (GDI) engines in the light duty 
fleet has partially reversed this trend. 
 
Figure 7 illustrates the time trend of bias-corrected PM2.5 predictions vs. measurements across the San Francisco 
study domain.  Greater amounts of residential wood combustion are used for winter home heating in central 
California compared to southern California, and so winter PM2.5 concentrations are significantly higher than summer 
PM2.5 concentrations in the San Francisco Bay Area.  The Bay area Air Quality Management District (BAAQMD) 
adopted a wood burning device rule in 2008 corresponding to month 96 in Figure 7. These rules included no burn 
day advisories, use of cleaner burning devices, proper labeling of fire wood sold in the Bay Area, bans on burning of 
toxic substances and limitations on excessive burning. These rules contributed the a gradual decline in peak winter 
PM2.5 concentrations across the SFBA. 
 
Figure 8 illustrates the time trend of bias-corrected PM2.5 predictions vs. measurements across the Sacramento and 
Fresno study areas.  Major transportation corridors pass through each of these medium-sized cities, but they do not 
have the same degree of population density and traffic congestion that is experienced in Los Angeles and San 
Francisco.  Sacramento and Fresno are also located in California Central Valley, which experiences colder 
temperatures during winter months compared to coastal cities.  This emphasizes the trend of higher winter 
concentrations associated with residential home heating.  The San Joaquin Valley Unified Air Pollution Control 
District implemented Rule 4901 to create more stringent controls on residential wood burning beginning in 2003. 
This rule applies to areas that are below 3,000 feet elevation with natural gas heating capabilities. An Environmental 
Health Evaluation submitted in 2008 showed the seasonal impact the rule made in reducing PM2.5 concentrations in 
Fresno [33].  The Sacramento Metropolitan Air Quality Management District (SMAQMD) also enacted a 
curtailment program for wood burning. SMAQMD partnered with a local Low-Income Weatherization Program 
from 2008 to 2011 to fund installments of less polluting wood devices and gas stoves in low-income areas [34].   
  
 



 
Figure 5: Time series of predicted (solid line) vs. measured (dots) monthly-average PM2.5 concentrations at 
measurement locations in the Los Angeles 1-km study region.  All model concentrations have been bias-corrected.  
Measurement site codes correspond to names designated by the US EPA monitoring network. 



 
Figure 6: Time series of predicted (solid line) vs. measured (dots) monthly-average PM2.5 concentrations at 
measurement locations in the Los Angeles 1-km study region.  All model concentrations have been bias-corrected.  
Measurement site codes correspond to names designated by the US EPA monitoring network. 
 
  



 
Figure 7: Time series of predicted (solid line) vs. measured (dots) monthly-average PM2.5 concentrations at 
measurement locations in the San Francisco Bay Area 1-km study region.  All model concentrations have been bias-
corrected.  Measurement site codes correspond to names designated by the US EPA monitoring network. 



 
Figure 8: Time series of predicted (solid line) vs. measured (dots) monthly-average PM2.5 concentrations at 
measurement locations in the Sacramento (a-f) and Fresno (g-i) 1-km study regions.  All model concentrations have 
been bias-corrected.  Measurement site codes correspond to names designated by the US EPA monitoring network. 



 
 
 

3.3  Spatial Plots of Exposure Fields 

 
On-road vehicles emit primary particulate matter that contributes to the PM2.5 concentrations across urban areas in 
California.  Many other sources also emit particulate matter, including residential wood combustion, food cooking, 
agricultural activities, natural gas combustion, etc.   The source-tagging features inherent in the CTM used to predict 
concentration fields in the current study was used to explicitly track tailpipe emissions through the simulation of 
atmospheric mixing, advection, deposition, and chemical reaction.  These calculations capture the time and spatial 
trends in motor vehicle emissions that are needed for public health assessments. 
 
Figure 9 shows the spatial distribution of predicted PM2.5 mass concentrations averaged over the years 2000-2011 
after statistical bias correction.  Each panel of Figure 9 illustrates results for a different region of California with 
different spatial resolution.  Figure 9a illustrates results covering all of California with 24-km spatial resolution, with 
highest concentrations generally predicted in Los Angeles and throughout the Central Valley.  Figures 9b and 9c 
illustrate predicted PM2.5 concentrations over the San Joaquin Valley and the South Coast Air Basin with 4-km 
spatial resolution.  Figures 9d, 9e, and 9f illustrate predicted PM2.5 concentrations over Sacramento, the San 
Francisco Bay Area, Fresno, and Los Angeles with 1-km spatial resolution.  The increased spatial resolution brings 
features of the pollution fields into focus that are hidden at the coarse spatial resolution.   Transportation corridors 
are apparent in several of the high-resolution 1-km fields but are masked from view in the 4-km and 24-km fields.  
 
Figure 10 shows the spatial distribution of predicted PM2.5 EC concentrations averaged over the years 2000-2011 
using the same format as Figure 9.  EC is a sub-component of PM2.5 mass that is often associated with traffic 
sources.  PM2.5 EC concentrations are lower than total PM2.5 mass concentrations, and the spatial gradients in the 
PM2.5 EC fields are sharper.  Both on-road and off-road diesel engines contribute strongly to PM2.5 EC 
concentrations, with the highest concentrations predicted at shipping ports associated directly with ships themselves 
or the equipment used to service ships.   
 
Figures 11 and 12 show the spatial distribution of primary PM2.5 mass emitted from on-road gasoline engines, and 
on-road diesel engines, respectively.  Maximum concentrations from on-road sources are generally less than 5% of 
total PM2.5 mass concentrations.  Secondary particulate matter produced from precursor gases emitted from motor 
vehicles adds to this total but are not quantified in the current study.  Likewise, road dust, tire wear, and brake wear 
particulate matter are included as part of the total PM2.5 mass shown in Figure 9 and are not included in Figures 11 
and 12.  The concentration fields for gasoline and diesel vehicles generally reflect the activity patterns of freight 
transport and passenger vehicles.  Freight transport is focused on major highways leading to and from shipping ports 
or regional warehouses.  Passenger vehicle traffic is more evenly distributed across the major transportation 
facilities spanning urban areas.  All of these features are apparent at 1-km spatial resolution but somewhat masked at 
4-km and 24-km spatial resolution. 
 



 
 

 
 

  
Figure 9: Bias-corrected PM2.5 mass concentrations averaged over the years 2000-2011.  All units µg m-3. 
 



  

 

 

 
 

Figure 10: Bias-corrected PM2.5 EC concentrations averaged over the years 2000-2011.  All units µg m-3. 
 



  

 

 

 
 

Figure 11: Bias-corrected PM2.5 mass concentrations associated with on-road gasoline vehicles averaged over the 
years 2000-2011.  All units µg m-3. 
 



 

 

  

 
 

Figure 12: Bias-corrected PM2.5 mass concentrations associated with on-road diesel vehicles averaged over the years 
2000-2011.  All units µg m-3. 
 
 
 
 



3.4  Public Health Impacts of Tailpipe Emissions 

 
The public health impacts of total PM2.5 mass concentrations and PM2.5 mass concentrations associated with on-road 
motor vehicles were calculated using the BenMAP-CE v1.5 model provided by the US EPA(Sacks et al., 2018).  
The PM2.5 health impact function was taken from a major epidemiological study (Pope et al., 2002). Avoided 
mortality was translated to a monetary value using the standard value of a statistical life (VSL) recommended by US 
EPA yielding a VSL equivalent to USD 7.6 M.  The spatial distribution of population assumed in health impact 
calculations was based on 2010 census information, which is consistent with the assumptions inherent when creating 
the 1-km emissions inventories for on-road vehicles. Mortality calculations for total PM2.5 mass assume a uniform 
background concentration of 3 µg m-3, while mortality calculations for PM2.5 mass associated with on-road motor 
vehicles assume a background concentration of 0 µg m-3. 
 
Figure 13a shows the predicted mortality trends for the 1-km Los Angeles study region between the years 2000-
2011.  Total PM2.5 mortality generally declines over this time period due to the decreasing ambient PM2.5 mass 
concentrations across the region (see Figures 5-6 and associated discussion).  PM2.5 mortality associated with on-
road motor vehicles accounts for less than 5% of the total PM2.5 mortality due to the relatively low contribution that 
tailpipe emissions make to total PM2.5 concentrations.  PM2.5 mortality associated with on-road motor vehicles 
generally declines along with the total PM2.5 mortality except during the final two years of the study period.   
 
Figures 13b and 13c show the predicted PM2.5 mortality trends for the San Francisco and Sacramento study 
domains, respectively.  PM2.5 mortality associated with on-road sources once again account for less than 5% of total 
PM2.5 mortality in these study regions.  Both total PM2.5 mortality and on-road vehicle PM2.5 mortality decline over 
time due to reduced ambient PM2.5 concentrations.  
 
Figure 13d shows the predicted PM2.5 mortality trends for Fresno.  Long term trends in PM2.5 mortality are not as 
apparent in this study domain as they are in the other three domains.  This constant behavior reflects the general lack 
of change in ambient PM2.5 concentrations in Fresno during the study time period (see Figure 8g-i).   
 

  

  
 
Figure 13: Mortality associated with total PM2.5 mass concentrations and PM2.5 mass emitted from on-road vehicles. 

0

100

200

300

400

500

600

700

0

2000

4000

6000

8000

10000

12000

14000

O
nr

oa
d 

PM
2.

5 
M

or
ta

lit
y

To
ta

l P
M

2.
5 

M
or

ta
lit

y

Analysis Year

(a) Los Angeles PM2.5 Mortality

Total PM

Onroad

0

50

100

150

200

250

0

1000

2000

3000

4000

5000

6000

O
n-

ro
ad

 P
M

2.
5 

M
or

ta
lit

y

To
ta

l P
M

2.
5 

M
or

ta
lit

y

Year

(b) SFBA PM2.5 Mortality

Total PM

Onroad PM

0

10

20

30

40

50

60

70

0

500

1000

1500

2000

2500

O
nr

oa
d 

PM
2.

5 
M

or
ta

lit
y

To
ta

l P
M

2.
5 

M
or

ta
lit

y

Year

(c) Sacramento PM2.5 Mortality
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The monetary value of the public health penalty associated with exposure to PM2.5 concentrations can be calculated 
by multiplying the mortality values displayed in Figure 13 with the Value of a Statistical Life recommended by the 
US EPA ($7.6M).  Using these figures, the total PM2.5 penalty decreased by $40B yr-1 (Los Angeles), $12B yr-1 (San 
Francisco), $5B yr-1 (Sacramento), and $2.6B yr-1 (Fresno).  On-road vehicles accounted for $1.2B yr-1 (Los 
Angeles), $890M yr-1 (San Francisco), and $220M yr-1 (Sacramento) of these public health savings.  Fresno is 
predicted to suffer from increased PM2.5 concentrations associated with on-road motor vehicles during the study 
period, with an additional public health burden equivalent to $5B yr-1.    
 
 
4 Conclusions 

The development of pollutant concentration fields with 1-km spatial resolution helps bring PM2.5 spatial gradients 
around major transportation corridors across California into focus.  These pollutant fields can be used for more 
accurate calculations for public health impacts from on-road vehicles compared to coarser fields developed at 4-km 
or 24-km spatial resolution.   
 
PM2.5 total mass concentrations decreased across Los Angeles, the San Francisco Bay Area, and Sacramento during 
the period 2000 – 2011.  Long-term reduction trends were less obvious at Fresno during the same time period.  The 
improvement to air quality can largely be attributed to reduced emissions from on-road vehicles, and the adoption of 
curtailments on winter wood burning for home heating.  Trends for PM2.5 mass concentrations associated with on-
road motor vehicles largely mirror trends in total PM2.5 mass concentrations.  Specific measures leading to reduced 
PM2.5 mass concentrations associated with on-road vehicles include adoption of Diesel Particle Filters (DPFs) and 
continuous improvements in gasoline vehicle engines over the study time period. 
 
The public health benefits associated with reduced emissions from motor vehicle traffic can be expressed as 300 
avoided deaths each year with an equivalent monetary value estimated at $2.3B yr-1 using standard account methods 
published by the US EPA.   
 
5 Future Work 

The pollutant fields developed in the current project should be useful for a number of follow-on studies.  
Demographic information may be used to quantify any disparities in the public health burden associated with 
exposure to traffic related air pollution based on race or income level.  Epidemiological studies may be conducted 
using the exposure fields to identify associations with numerous health endpoints (death, diabetes, cognitive 
impairment, overall physical fitness, autism, learning disabilities, etc).  All of the pollutant concentration fields 
developed under the current project are available to the public at www.archive.address. 
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